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Abstract  

With the development of three-dimensional 

(3D) printing, virtual reality (VR), and augmented 

reality (AR), a method to accurately determine the 

structures of 3D objects in various fields including 

computer-aided design (CAD) is required. However, 

unlike two-dimensional structures, analyzing 3D 

structures is highly problematic in terms of 

processing speed because the involvement of large 
number of data. In general, although it is possible to 

formulate an algorithm based on contact 

determination to achieve drawing at high speed, it is 

impossible with such an approach to capture the 

shape of the structure itself and therefore it cannot 

be used directly in CAD or 3D printing. Herein, to 

capture the structure, stereoscopic angles are used 

to perform internal and external determination for 

any point in three dimensions. However, the 

algorithm using the solid angle can be accurately 

internal and external determination, whereas a 
method using a conventional central processing unit 

with a simple triangular function is very problematic 

in terms of speed. From the above, to focus on the 

effectiveness of the parallel arithmetic when 

performing the internal and external determination 

in accordance with the algorithm using the 

stereoscopic angle, this study proposes a high-speed 

determination method using general-purpose 

graphics processing unit (GPGPU). In addition, by 

extending the idea of the 3D angle, it is shown that 

the shape can be captured accurately and quickly 

even for a complex shape (a 3D object including 
layering) inside another complex shape. 

 

Keywords — CUDA, Parallel Computing, GPGPU, 

Internal and External Analysis. 

 

I. INTRODUCTION 

With the development of three-dimensional (3D) 

printing, virtual reality (VR), and augmented reality 

(AR), the need to capture accurately the structures of 

3D objects including those with complex shapes also 

increases [1, 2]. In general, 3D analysis is difficult 

because it results in more data than do two 

dimensions, the main problem being the processing 

speed. To display objects at high speed in drawings 

or the like, contact-determination algorithms are 

often used for the 3D shapes [3, 4]. Although this 

method allows objects to be drawn at high speed by 

determining their shapes from the contact, the actual 

shape of a 3D object is not determined internally or 

externally at any point and therefore cannot be 

captured accurately. Therefore, the contact-
determination method differs from general 3D 

computer graphics; to capture a 3D structure 

accurately, because it is necessary to calculate the 

shape including the internal structure, the amount of 

calculation is increased [5, 6]. 

 

II. RELATED RESEARCH 

To determine any point of a 3D structure 

accurately both internally and externally, it is 

possible to extend the winding-number algorithm 

using the angle of the 2D version. Therefore, in this 

section, we explain the winding-number algorithm in 
two and three dimensions and the general-purpose 

graphics processing unit (GPGPU) used in this study. 

A. An angle-based method for internal and 

external determination 

1) Winding-number algorithm (two-dimensional) 

Internal and external determination in two 

dimensions can be detected by the angle as a value 

with either positive or negative sign. Internal and 
external determination based on angle is shown in 

Fig. 1. It is possible to determine the internal point 

by setting the sum of the angles θ1 to θ7 from each 

vertex P1 to P7 to 2π (e.g., Fig. 2). Alternatively, it is 

possible to determine the external point by setting 

the sum of the angles θ1 to θ7 from each vertex P1 to 

P7 to zero (e.g., Fig. 3). 

This method allows internal and external 

determination even for non-convex shapes. As in the 

above method, it is possible to determine whether 

the sum of the angle is 2π or zero (Figs. 4 and 5) [5-

8]. 
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Fig 1. Positive angle and negative angle 
 

 

 
Fig 2. Example determined to be inside 
 

 
Fig 3. Example determined to be outside  
 

 
Fig 4. Example determined to be inside 
 

 
Fig 5. Example determined to be outside 

 

From the above, we summarize that the internal 

and external determination of the number of vertices 

is n, in 2D shape, according to 

 

       𝑤 =  𝜃𝑖

𝑛

𝑖=1

=  
2𝜋,     𝑖𝑛𝑛𝑒𝑟

0,     𝑜𝑢𝑡𝑒𝑟
  

 

2) Winding-number algorithm (three-dimensional) 

Using a solid angle for 3D objects allows for 

internal and external determination. When using a 
solid angle, with respect to shape A as shown in Fig. 

6, using a sphere B of radius r, the entire sphere can 

be determined to be internal from being inclusive. 

By contrast, for shape A as shown in Fig. 7, when it 

is external, because it is not possible to project only 

a portion as a sphere C, it can be determined as 

external. From the above, it is possible to perform 

the determination. Meanwhile, for 3D space, we 

cannot define the order of data entry in a fixed 

direction, and entries must be in a fixed direction 

relative to each polygon. In other words, because 
positive and negative determination cannot be made 

as shown in Fig. 1, in the case of a solid angle (3D), 

determination is made as shown in Figs. 8 and 9 [5, 

6, 8]. 

 

 

 

 
Fig 6. When inside 

 

 

 

 
Fig 7. When outside 

(1)  

. 

 

…  . 
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However, because this definition is in 

conjunction with the coordinate input method for 

polygons in general programming, it has high 

affinity with the algorithm in the present study [9-

12]. 

For a specific calculation method, we use 

 

    𝑆 =   𝜃𝑖 − (𝑛 − 2)π

𝑛

𝑖=1

 × 𝑟2     (𝑛 ≥ 3) 

     𝑆𝑎𝑙𝑙 =  𝑆𝑖

𝑚

𝑗=1

=   
4𝜋,     𝑖𝑛𝑛𝑒𝑟

0,     𝑜𝑢𝑡𝑒𝑟
    (𝑟 = 1) 

 

However, θ corresponds to Fig. 10 [6], the radius r is 

unity and m is the number for the polygon 

comprising the 3D object. 

 

 
Fig 8. Example of positional determination negative in 

relation to a polygon 

  
Fig 9. Example of positional determination positive in 

relation to a polygon 
 

B. High-speed determination method using 

GPGPU 

1) Development environment by CUDA using 

GPGPU made by NVIDIA 

CUDA is a parallel computation platform and a 

programming model for conducting general-purpose 

computation using a graphics processing unit (GPU) 

installed on a NVIDIA-made graphics board. 

However, CUDA often also refers to the 

programming model and language as well as 

NVIDIA’s compiler and library, and in a wider 
sense it can indicate the set of software for running 

and executing the programming using an NVIDIA 

GPU [13-17]. 

 

 

 
Fig 10. Projecting a polygon onto a sphere 

 

 

 

By using a conventional central processing unit 

(CPU), because methods that use CUDA create huge 

numbers of threads, it is generally possible to obtain 

results faster. However, CUDA needs a separate 
device on a computer (Picture 1) [8], and we must 

write a program that has different hardware (device) 

awareness, as shown in Fig. 11 [13]. Two host codes 

running on the CPU side and a device code running 

on the GPU side must be created (Fig. 12) [13]. In 

addition, because the PCIe bus is used to connect to 

the device side to be processed by the host side and 

the GPU to be processed by the CPU, from the 

relationship of communication speed, it may slow 

down in some cases (Fig. 13) [13]. 

From the above, we understand, because it is 

not necessarily faster to use the GPU, that it is 
necessary to run a program that calculates the 

amount of algorithms and data. 

 

 

 
Picture 1. PCI Express x16 Graphics Card (NVIDIA 

Quadro K420) 

 

 

(2)  …
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Fig 11. The CUDA programming model 

 
 

 
Fig 12. Sequential and parallel programming 

 

 

 
Fig 13. Heterogeneous Architecture 

 

2) Parallel computation by GPGPU 

The structure of the GPU varies depending on 

the model and the core generation, but it basically 

comprises a large number of streaming 

multiprocessors in the GPU chip and the processing 

unit of the streaming processor that exists inside it. 
Although there are a number of processing units, it 

has a limitation that it is not possible to perform 

complex processing, unlike a CPU does. For 

example, control flow is a fundamental construct in 

any high-level programming language [13]. GPUs 

are comparatively simple devices without complex 

branch prediction mechanisms. Therefore, because 

the operating frequency of GPUs is generally low, 

they perform slower than CPUs. 

CUDA is a single-program multiple-data 

programming model implemented on single-

instruction multiple-data (SIMD) hardware [17, 18]. 
A large number of processors execute the same 

instructions in the thread program of the same kernel 

for each datum. In other words, unlike a multicore 

CPU, where different processors execute different 

instructions, in GPUs, all the processors execute the 

same instruction at the same time. Therefore, it is 

impossible to use GPUs for a general-purpose 

program, whereas independent, parallel operations 

with no dependencies between threads can be 

performed at high speed. 

However, in the case of a general scientific and 

technical calculation, as the calculation involves 

dependency, the operation is performed efficiently 

by using SIMD and its extended version single-

instruction multiple-thread (SIMT) [18, 19]. In the 

case of the SIMT architecture, however, the number 

of threads executed in a single instruction sequence 

differs, depending on the technology. For example, 
in the case of AMD, 64 threads are known 

collectively as a wavefront, and in the case of ARM, 

the Bifrost GPU is called the Quad, as collectively 

four threads [20-22]. Also, in the case of NVIDIA, 

which is used in the present experiments, 32 threads 

run collectively and are known as the warp. 

Therefore, it is necessary to develop systems in 

accordance with the use environment [19, 23-24]. 

 

3) Method for controlling threads using grids and 

blocks 

The CUDA, developed and provided by 
NVIDIA, performs at high speed by using a large 

number of threads. However, it is implemented 

using the grid size and thread block, because 

managing a large number of threads in a program is 

very difficult as well as not appropriate [13-16]. 

Therefore, CUDA exposes a thread hierarchy 

abstraction to enable one to organize one’s threads. 

This is a two-level thread hierarchy that is further 

divided into blocks of threads and grids of blocks, as 

shown in Fig. 14 [13]. All threads spawned by a 

single kernel launch are referred to collectively as a 
grid, and a grid comprises many thread blocks. In 

the generation of threads, the grid is organized as a 

limit for the 3D array of blocks. Similarly, each 

block is organized as an upper bound for the 3D 

array of threads [13-16]. 

The number of threads that can be generated 

depends on the device’s generation and model 

number, but if the device is the Pascal generation, 

then implementing it as a 3D sequence of the thread 

block (1024, 1024, 64) and the grid size (2
31

−1, 

65535, 65535) is possible [13-16, 23]. 

 
Fig 14. A two-level thread hierarchy 
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III. RESEARCH CONTENT 

The purpose of this study is to make the 

internal and external determination fast and accurate 
for complex shapes with layering by using solid 

angles. With the algorithm using solid angles as 

described above, it is difficult to obtain results at 

high speed because the calculation is generally 

complicated. However, by using CUDA, it is 

possible to achieve the desired speed by creating 

many threads. 

A. Hierarchical determination of 2D objects based 

on winding-number algorithm 

By using the winding-number algorithm, it is 

possible to classify each closed surface by a 

hierarchy. According to the algorithm described 

above, if it can be determined as internal, then it 

becomes 2π. By extending this method, i.e., if there 

is a closed surface within the closed surface (i.e., a 

second layer), it can be seen that it becomes 4π 

because the apex is traced twice. Therefore, as 

shown in Fig. 15, area 1 is zero, area 2 is 2π, and 

area 3 is 4π, therefore it is possible to conduct 

internal and external determination including the 
hierarchy. The specific experimental results are 

shown in Fig. 16. 

As explained previously, for a 2D complex 

shape having M points, the formula for internal and 

external determination considering the hierarchy is 

obtained by using the Eq. (3). However, k is the kth 

layer and θt, θij is the angle as a value with either 

positive or negative sign. In addition, l is the number 

of the vertexes, the angle of vertex j of the object i is 

θij and has either positive or negative sign: 

 

     𝑤𝑎𝑙𝑙 =  𝜃𝑡

𝑙

𝑡=1

 

              =    𝜃𝑖𝑗

𝑛

𝑗=1

 

𝑚

𝑖=1

 

           =  
2𝜋𝑘,   𝑖𝑛𝑛𝑒𝑟  𝑘 𝑡ℎ 𝑙𝑎𝑦𝑒𝑟  

 
       0,    𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

  

 
 

 

 
Fig 15. If necessary 

 

 

 

 

 
 

Fig 16. If necessary 

wall =  ( θij

n

j=1

m

i=1

) = 

B. Hierarchical determination of 3D objects based 

on winding-number algorithm 

By extending the 2D winding-number algorithm 

into three dimensions, it is possible to determine the 

hierarchy even in the case of using a solid angle. For 
example, as shown in Fig. 17, when a triangular 

pyramid (object 2) is contained inside a cuboid 

(object 1), it is 8π, as any point inside the triangular 

pyramid is inside two objects. By contrast, the inner 

point of only the cuboid (object 1), that is, not 

included in the triangular pyramid (object 2), is 4π. 

In addition, the point that is not included in any of 

the objects is zero. Therefore, it can be seen that area 

A is 8π, area B is 4π, and area C is zero. Similarly, 

in the case of Fig. 18, the part where objects 3 and 4 

overlap, it is 8π. In addition, the point inside object 3 

or 4 is 4π, and the point that is not included in any 
objects is zero. Therefore, in summary, area D is 8π, 

areas E and F are 4π, and area G is zero. 

From the above, we deduce the following 

equation: 

 

   𝑆𝑘𝑡ℎ(𝑎𝑙𝑙 ) =    𝑆𝑖𝑗

𝑛

𝑗=1

 

𝑚

𝑖=1

 

                   =  
4𝜋𝑘,    𝑖𝑛𝑛𝑒𝑟  𝑘 𝑡ℎ 𝑙𝑎𝑦𝑒𝑟  

 
       0,   𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

  

 

 

Here, k is the number of objects included, m is the 

total number of objects, and n is the total number of 

solid angles of each object. 

 

 

(3) …  

(4) …  

. 
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IV. EXPERIMENTAL 

As described above, by using GPUs, when 

processing the same calculation in parallel, it is 
possible to output the results at high speed even if 

the number of data is large. In the present study, we 

verified that the results can be output at high speed 

by using CUDA for a very large number of data 

calculations that use trigonometric functions such as 

solid angle by utilizing its properties. 

 

 

 
Fig 17. Relationship between objects and hierarchies 

(1) 
 

 
 
Fig 18. Relationship between objects and hierarchies 

(2) 
 

 

A.  Experimental content 

The internal and external determination should 
be validated in the range −50 ≤ x ≤ 50, −50 ≤ y ≤ 50, 

and −50 ≤ z ≤ 50. However, the coordinates x, y, and 

z of the points to be determined are all integer values. 

Therefore, the number of points to be determined is 

101 × 101 × 101 = 1,030,301. In the experiments, 

internal and external determination was performed 

for the primitive 3D shapes, as shown in Figs. 19 - 

24, the vertex and surface information of which is 

given in Table 1. 

Because the proposed method is within the 

upper limit for thread creation, each decision point 

can correspond to one thread. Therefore, in 
implementing using CUDA, it was defined as a grid 

(16, 16, 16) and a block (8, 8, 8). However, in this 

case, because it exceeds the range determined from 

the relationship between the grid and the block [(16 

× 8)3 > 1013], we chose to discard any result outside 

the range. 

From the above, the algorithm using CUDA 

was implemented according to the activity diagram 

shown in Fig. 25. In addition, for comparison, we 

implemented a method on a conventional CPU 
according to the activity diagram shown in Fig. 26. 

      
Fig 19. Box 

 

           
Fig 20. Cone 

 

           
Fig 21. Cylinder 

 

     
Fig 22. Convex shape 
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Fig 23. Sphere 

 

 

 

            
Fig 24. Pipe 

 

 

 

 

 

 

 

 

 
Table 1. Information about primitive 3D shapes 

 Vertices Surfaces 

Box (Fig. 19) 8 6 

Cone (Fig. 20) 22 40 

Cylinder (Fig.21) 42 60 

Convex shape (Fig.22) 202 220 

Sphere (Fig. 23) 382 400 

Pipe (Fig. 24) 80 80 

 

 

 

B.  Experimental environment 

We used a GPGPU that can be incorporated into 

a laptop (NVIDIA 1060GTX). The experimental 

environment is a device that can be prepared 
relatively easily for consumers, and we reason that 

this environment is appropriate for verifying whether 

it can be applied to, in future, VR and AR fields. 

Specifically, we prepared the environment as 

described in Tables 2 and 3. More information about 

the device can be found in Fig. 27. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig 25. Activity Diagram 

Fig 26. Activity Diagram 
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Table 2. Specifications of the host PC 

Technical specification Value 

OS 
CentOS Linux 

release 7.4 

Compiler gcc 4.8.5 

CPU 
Intel Corei7-
7700HQ   

2.80GHz 

Memory 32 GB 

SSD 512 GB 

 
Table 3. Basic device information 

Technical specification Value 

GPU 
NVIDIA GeForce 

GTX 1060 

Compiler 
CUDA Toolkit 

9.1.85 

 

 
Fig 27. Specification of device used in this experiment 

 

V. RESULTS 

Table 4 gives the time taken to output the 
internal and external determination results for each 

3D coordinate. In addition, the output results in 

consideration of the hierarchy in Table 3 are shown 

in Figs. 28–33. In outputting, the inside and outside 

determination result file of each coordinate is read 

and displayed using Java 3D. In all cases, the results 

could be outputted accurately at high speed. 

 

 

 

 

 

 

 

 

 

  
 

 

Table 4. Specifications of the host PC 

 
Output 
results 

GPGPU 
(s) 

C (s) 

Box(Fig.19) 

Cone (Fig. 20) 

Figs. 28 

and 29 
0.991 24.198 

Cylinder 

(Fig.21) 

Convex shape 

(Fig. 22) 

Figs. 30 

and 31 
1.408 223.54 

Sphere (Fig. 

23) 

Pipe (Fig. 24) 

Figs. 32 

and 33 
1.768 424.22 

 

 

VI. CONCLUSION 

To determine accurately the 3D structure of 

complex shapes, large amounts of data must be 

processed. In this study, we showed that using a 
GPU allows us to obtain the results at high speed. In 

general, because the numbers of vertices and 

surfaces to be the target of the operation to become 

complex shape increase, we reason that the proposed 

method is effective. However, because this method 

of using a GPU depends on the device, it is not 

necessarily the optimal method for a given shape. In 

future studies, we will seek the optimal thread 

generation system corresponding to the device so 

that decisions can be made at high speed for 

complex shapes in a wider range. 
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Fig 28. Sample data 

 
Fig 29. Sample data 

 

 
Fig 30. Sample data 

 

 
Fig 31. Sample data 

 
 

Fig 32. Sample data 



International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019 

 

 

ISSN: 2231-2803                        http://www.ijcttjournal.org                                     Page 10 

 
Fig 33. Sample data 

 

 

 

REFERENCES 

 
[1] THE NUNATAK GROUP, VIRTUAL & AUGMENTED 

REALITY, UPDATE, 4(7), 2016. 

[2] Dusty Robbins, Chris Cholas, Mike Brennan, Keith 

Critchley, Augmented and Virtual Reality for Service 

Providers, Intel Corporation, Immersive media Business 

Brief, 2017.  

[3] P. Jimenez, F. Thomas, C. Torras, 3D collision detection: a 

survey, Computers & Graphics, 25(2), 269-285, 2001. 

[4] Y. Ozeki, S. Kameyama, S. Kodama, S. Akashi. A 

Proposal for the User Interface by Using Laser Devices 

Arranged in a Three Dimensional Space, Proceedings of 

IPSJ/IEICE Forum on Information Technology, Vol. 3, 

385-388, 2016. 

[5] Nakayama Atsushi, Kawakatsu Daisuke, Kobori Ken-ichi, 

Kutsuwa Toshirou, A Checking Method for a Point Inside 

a Polyhedron in Grasping an Object of VR, Proceedings of 

the 48th National Convention of IPSJ, 2, 297–298, 1994. 

[6] S. Kodama, Verification of Efficacy of Inside-Outside 

Judgement in Respect of a 3D-Primitive Shapes Using 

GPGPU, International Journal of Modern Research in 

Engineering and Technology, 2(3), 1-11, 2017. 

[7] Dan Sunday, Inclusion of a Point in a Polygon, http:// 

geomalgorithms.com/a03-_inclusion.html. 

[8] S. Kodama, Effectiveness of inside/outside determination 

in relation to 3D non-convex shapes using CUDA, The 

Imaging Science Journal, DOI: 10.1080/13682199.2018. 

1497251, 2018. 

[9] Adrian Kaehler, Gary Bradski, Learning OpenCV 3: 

Computer Vision in C++ with the OpenCV Library, 

O'Reilly Media, 978-1491937990, 2017. 

[10] Samuel D. Jaffee, Laura Marie Leventhal, Jordan 

Ringenberg, G. Michael Poor, Interactive 3D Objects, 

Projections, and Touchscreens, Proceedings of the 

Technology, Mind, and Society, DOI: 10.1145/3183654. 

3183669, 2018. 

[11] Andrew Davison, Pro Java 6 3D Game Development: Java 

3D, JOGL, JInput and JOAL APIs, Apress, 978-

W1590598177, 2007. 

[12] Richard G. Baldwin, Understanding Transforms in Java 

(Java Programming Notes # 1552), https://www. 

developer.com/java/other/article.php/3717101/Understandi

ng-Transforms-in-Java-3D.htm, 2007. 

[13] John Cheng, Max Grossman, Ty McKercher, Professional 

CUDA C Programming, Wrox Press Ltd., 9781118739327, 

2014. 

[14] David B. Kirk, Wen-mei W. Hwu, Programming 

Massively Parallel Processors, A Hands-on Approach 3rd 

Edition, Morgan Kaufmann, 9780128119860, 2016. 

[15] Jason Sanders, Edward Kandrot, CUDA by Example: An 

Introduction to General-Purpose GPU Programming, 

Addison-Wesley Professional, 978-0131387683, 2010. 

 

 

 

[16] Duane Storti, Mete Yurtoglu, CUDA for Engineers: An 

Introduction to High-Performance Parallel Computing, 

Addison-Wesley Professional, 978-0134177410, 2015. 

[17] John Nickolls, GPU parallel computing architecture and 

CUDA programming model, IEEE Hot Chips 19 

Symposium, DOI: 10.1109/HOTCHIPS.2007.7482491, 

2007. 

[18] Onur Mutlu, Computer Architecture: SIMD and GPUs 

(Part III) (and briefly VLIW, DAE, Systolic Arrays), 

Carnegie Mellon University, 

https://www.archive.ece.cmu.edu/~ece 

740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5. 

1.3-simd-and-gpus-part3-vliw-dae-systolic.pdf. 

[19] John Nickolls, William J. Dally, The GPU Computing Era, 

IEEE Micro, 30(2), 56 - 69, DOI: 10.1109/MM.2010.41, 

2010. 

[20] Jem Davies, The bifrost GPU architecture and the ARM 

Mali-G71 GPU, IEEE Hot Chips 28 Symposium (HCS), 

DOI: 10.1109/HOTCHIPS.2016.7936201, 2016. 

[21] Avneesh Bhatnagar, Evan Speight, Dan Crawl, Joseph 

Dunn, John Bennett, Application management techniques 

for the Bifrost system, Proceedings of the 5th IEEE 

Workshop on Mobile Computing Systems & Applications 

(WMCSA 2003), DOI: 10.1109/MCSA.2003.1240768, 66-

76, 2003. 

[22] S.J. Pennycook, G.R. Mudalige, S.D. Hammond, S.A. 

Jarvis, Parallelising Wavefront Applications on General-

Purpose GPU Devices, Proceedings of the 26th UK 

Performance Engineering Workshop 2010, ISBN 

9780955970320, 111-118, 2010. 

[23] Daichi Mukunoki, Toshiyuki Imamura, Daisuke Takahashi, 

Automatic Thread-Block Size Adjustment for Memory-

Bound BLAS Kernels on GPUs, IEEE 10th International 

Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSOC), DOI: 10.1109/MCSoC.2016.32, 2016. 

[24] Zahid Ansari, Asif Afzal, Moomin Muhiuddeen, Sudarshan 

Nayak, Literature Survey for the Comparative Study of 

Various High Performance Computing Techniques, 

International Journal of Computer Trends and Technology, 

27(2), 80-86, 2015. 

 


