
International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1

Internal and External Analysis Considering the

Layers of Three-dimensional Shapes Using

CUDA

Satoshi Kodama
1
, Yuka Ozeki

2
, Rei Nakagawa

3

1Research institute for Science and Technology, Tokyo University of Science, Japan
2, 3Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science

Abstract

With the development of three-dimensional

(3D) printing, virtual reality (VR), and augmented

reality (AR), a method to accurately determine the

structures of 3D objects in various fields including

computer-aided design (CAD) is required. However,

unlike two-dimensional structures, analyzing 3D

structures is highly problematic in terms of

processing speed because the involvement of large
number of data. In general, although it is possible to

formulate an algorithm based on contact

determination to achieve drawing at high speed, it is

impossible with such an approach to capture the

shape of the structure itself and therefore it cannot

be used directly in CAD or 3D printing. Herein, to

capture the structure, stereoscopic angles are used

to perform internal and external determination for

any point in three dimensions. However, the

algorithm using the solid angle can be accurately

internal and external determination, whereas a
method using a conventional central processing unit

with a simple triangular function is very problematic

in terms of speed. From the above, to focus on the

effectiveness of the parallel arithmetic when

performing the internal and external determination

in accordance with the algorithm using the

stereoscopic angle, this study proposes a high-speed

determination method using general-purpose

graphics processing unit (GPGPU). In addition, by

extending the idea of the 3D angle, it is shown that

the shape can be captured accurately and quickly

even for a complex shape (a 3D object including
layering) inside another complex shape.

Keywords — CUDA, Parallel Computing, GPGPU,

Internal and External Analysis.

I. INTRODUCTION

With the development of three-dimensional (3D)

printing, virtual reality (VR), and augmented reality

(AR), the need to capture accurately the structures of

3D objects including those with complex shapes also

increases [1, 2]. In general, 3D analysis is difficult

because it results in more data than do two

dimensions, the main problem being the processing

speed. To display objects at high speed in drawings

or the like, contact-determination algorithms are

often used for the 3D shapes [3, 4]. Although this

method allows objects to be drawn at high speed by

determining their shapes from the contact, the actual

shape of a 3D object is not determined internally or

externally at any point and therefore cannot be

captured accurately. Therefore, the contact-
determination method differs from general 3D

computer graphics; to capture a 3D structure

accurately, because it is necessary to calculate the

shape including the internal structure, the amount of

calculation is increased [5, 6].

II. RELATED RESEARCH

To determine any point of a 3D structure

accurately both internally and externally, it is

possible to extend the winding-number algorithm

using the angle of the 2D version. Therefore, in this

section, we explain the winding-number algorithm in
two and three dimensions and the general-purpose

graphics processing unit (GPGPU) used in this study.

A. An angle-based method for internal and

external determination

1) Winding-number algorithm (two-dimensional)

Internal and external determination in two

dimensions can be detected by the angle as a value

with either positive or negative sign. Internal and
external determination based on angle is shown in

Fig. 1. It is possible to determine the internal point

by setting the sum of the angles θ1 to θ7 from each

vertex P1 to P7 to 2π (e.g., Fig. 2). Alternatively, it is

possible to determine the external point by setting

the sum of the angles θ1 to θ7 from each vertex P1 to

P7 to zero (e.g., Fig. 3).

This method allows internal and external

determination even for non-convex shapes. As in the

above method, it is possible to determine whether

the sum of the angle is 2π or zero (Figs. 4 and 5) [5-

8].

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2

Fig 1. Positive angle and negative angle

Fig 2. Example determined to be inside

Fig 3. Example determined to be outside

Fig 4. Example determined to be inside

Fig 5. Example determined to be outside

From the above, we summarize that the internal

and external determination of the number of vertices

is n, in 2D shape, according to

 𝑤 = 𝜃𝑖

𝑛

𝑖=1

=
2𝜋, 𝑖𝑛𝑛𝑒𝑟

0, 𝑜𝑢𝑡𝑒𝑟

2) Winding-number algorithm (three-dimensional)

Using a solid angle for 3D objects allows for

internal and external determination. When using a
solid angle, with respect to shape A as shown in Fig.

6, using a sphere B of radius r, the entire sphere can

be determined to be internal from being inclusive.

By contrast, for shape A as shown in Fig. 7, when it

is external, because it is not possible to project only

a portion as a sphere C, it can be determined as

external. From the above, it is possible to perform

the determination. Meanwhile, for 3D space, we

cannot define the order of data entry in a fixed

direction, and entries must be in a fixed direction

relative to each polygon. In other words, because
positive and negative determination cannot be made

as shown in Fig. 1, in the case of a solid angle (3D),

determination is made as shown in Figs. 8 and 9 [5,

6, 8].

Fig 6. When inside

Fig 7. When outside

(1)

.

… .

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3

However, because this definition is in

conjunction with the coordinate input method for

polygons in general programming, it has high

affinity with the algorithm in the present study [9-

12].

For a specific calculation method, we use

 𝑆 = 𝜃𝑖 − (𝑛 − 2)π

𝑛

𝑖=1

 × 𝑟2 (𝑛 ≥ 3)

 𝑆𝑎𝑙𝑙 = 𝑆𝑖

𝑚

𝑗=1

=
4𝜋, 𝑖𝑛𝑛𝑒𝑟

0, 𝑜𝑢𝑡𝑒𝑟
 (𝑟 = 1)

However, θ corresponds to Fig. 10 [6], the radius r is

unity and m is the number for the polygon

comprising the 3D object.

Fig 8. Example of positional determination negative in

relation to a polygon

Fig 9. Example of positional determination positive in

relation to a polygon

B. High-speed determination method using

GPGPU

1) Development environment by CUDA using

GPGPU made by NVIDIA

CUDA is a parallel computation platform and a

programming model for conducting general-purpose

computation using a graphics processing unit (GPU)

installed on a NVIDIA-made graphics board.

However, CUDA often also refers to the

programming model and language as well as

NVIDIA’s compiler and library, and in a wider
sense it can indicate the set of software for running

and executing the programming using an NVIDIA

GPU [13-17].

Fig 10. Projecting a polygon onto a sphere

By using a conventional central processing unit

(CPU), because methods that use CUDA create huge

numbers of threads, it is generally possible to obtain

results faster. However, CUDA needs a separate
device on a computer (Picture 1) [8], and we must

write a program that has different hardware (device)

awareness, as shown in Fig. 11 [13]. Two host codes

running on the CPU side and a device code running

on the GPU side must be created (Fig. 12) [13]. In

addition, because the PCIe bus is used to connect to

the device side to be processed by the host side and

the GPU to be processed by the CPU, from the

relationship of communication speed, it may slow

down in some cases (Fig. 13) [13].

From the above, we understand, because it is

not necessarily faster to use the GPU, that it is
necessary to run a program that calculates the

amount of algorithms and data.

Picture 1. PCI Express x16 Graphics Card (NVIDIA

Quadro K420)

(2) …

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 4

Fig 11. The CUDA programming model

Fig 12. Sequential and parallel programming

Fig 13. Heterogeneous Architecture

2) Parallel computation by GPGPU

The structure of the GPU varies depending on

the model and the core generation, but it basically

comprises a large number of streaming

multiprocessors in the GPU chip and the processing

unit of the streaming processor that exists inside it.
Although there are a number of processing units, it

has a limitation that it is not possible to perform

complex processing, unlike a CPU does. For

example, control flow is a fundamental construct in

any high-level programming language [13]. GPUs

are comparatively simple devices without complex

branch prediction mechanisms. Therefore, because

the operating frequency of GPUs is generally low,

they perform slower than CPUs.

CUDA is a single-program multiple-data

programming model implemented on single-

instruction multiple-data (SIMD) hardware [17, 18].
A large number of processors execute the same

instructions in the thread program of the same kernel

for each datum. In other words, unlike a multicore

CPU, where different processors execute different

instructions, in GPUs, all the processors execute the

same instruction at the same time. Therefore, it is

impossible to use GPUs for a general-purpose

program, whereas independent, parallel operations

with no dependencies between threads can be

performed at high speed.

However, in the case of a general scientific and

technical calculation, as the calculation involves

dependency, the operation is performed efficiently

by using SIMD and its extended version single-

instruction multiple-thread (SIMT) [18, 19]. In the

case of the SIMT architecture, however, the number

of threads executed in a single instruction sequence

differs, depending on the technology. For example,
in the case of AMD, 64 threads are known

collectively as a wavefront, and in the case of ARM,

the Bifrost GPU is called the Quad, as collectively

four threads [20-22]. Also, in the case of NVIDIA,

which is used in the present experiments, 32 threads

run collectively and are known as the warp.

Therefore, it is necessary to develop systems in

accordance with the use environment [19, 23-24].

3) Method for controlling threads using grids and

blocks

The CUDA, developed and provided by
NVIDIA, performs at high speed by using a large

number of threads. However, it is implemented

using the grid size and thread block, because

managing a large number of threads in a program is

very difficult as well as not appropriate [13-16].

Therefore, CUDA exposes a thread hierarchy

abstraction to enable one to organize one’s threads.

This is a two-level thread hierarchy that is further

divided into blocks of threads and grids of blocks, as

shown in Fig. 14 [13]. All threads spawned by a

single kernel launch are referred to collectively as a
grid, and a grid comprises many thread blocks. In

the generation of threads, the grid is organized as a

limit for the 3D array of blocks. Similarly, each

block is organized as an upper bound for the 3D

array of threads [13-16].

The number of threads that can be generated

depends on the device’s generation and model

number, but if the device is the Pascal generation,

then implementing it as a 3D sequence of the thread

block (1024, 1024, 64) and the grid size (2
31

−1,

65535, 65535) is possible [13-16, 23].

Fig 14. A two-level thread hierarchy

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 5

III. RESEARCH CONTENT

The purpose of this study is to make the

internal and external determination fast and accurate
for complex shapes with layering by using solid

angles. With the algorithm using solid angles as

described above, it is difficult to obtain results at

high speed because the calculation is generally

complicated. However, by using CUDA, it is

possible to achieve the desired speed by creating

many threads.

A. Hierarchical determination of 2D objects based

on winding-number algorithm

By using the winding-number algorithm, it is

possible to classify each closed surface by a

hierarchy. According to the algorithm described

above, if it can be determined as internal, then it

becomes 2π. By extending this method, i.e., if there

is a closed surface within the closed surface (i.e., a

second layer), it can be seen that it becomes 4π

because the apex is traced twice. Therefore, as

shown in Fig. 15, area 1 is zero, area 2 is 2π, and

area 3 is 4π, therefore it is possible to conduct

internal and external determination including the
hierarchy. The specific experimental results are

shown in Fig. 16.

As explained previously, for a 2D complex

shape having M points, the formula for internal and

external determination considering the hierarchy is

obtained by using the Eq. (3). However, k is the kth

layer and θt, θij is the angle as a value with either

positive or negative sign. In addition, l is the number

of the vertexes, the angle of vertex j of the object i is

θij and has either positive or negative sign:

 𝑤𝑎𝑙𝑙 = 𝜃𝑡

𝑙

𝑡=1

 = 𝜃𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 =
2𝜋𝑘, 𝑖𝑛𝑛𝑒𝑟 𝑘 𝑡ℎ 𝑙𝑎𝑦𝑒𝑟

 0, 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

Fig 15. If necessary

Fig 16. If necessary

wall = (θij

n

j=1

m

i=1

) =

B. Hierarchical determination of 3D objects based

on winding-number algorithm

By extending the 2D winding-number algorithm

into three dimensions, it is possible to determine the

hierarchy even in the case of using a solid angle. For
example, as shown in Fig. 17, when a triangular

pyramid (object 2) is contained inside a cuboid

(object 1), it is 8π, as any point inside the triangular

pyramid is inside two objects. By contrast, the inner

point of only the cuboid (object 1), that is, not

included in the triangular pyramid (object 2), is 4π.

In addition, the point that is not included in any of

the objects is zero. Therefore, it can be seen that area

A is 8π, area B is 4π, and area C is zero. Similarly,

in the case of Fig. 18, the part where objects 3 and 4

overlap, it is 8π. In addition, the point inside object 3

or 4 is 4π, and the point that is not included in any
objects is zero. Therefore, in summary, area D is 8π,

areas E and F are 4π, and area G is zero.

From the above, we deduce the following

equation:

 𝑆𝑘𝑡ℎ(𝑎𝑙𝑙) = 𝑆𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 =
4𝜋𝑘, 𝑖𝑛𝑛𝑒𝑟 𝑘 𝑡ℎ 𝑙𝑎𝑦𝑒𝑟

 0, 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

Here, k is the number of objects included, m is the

total number of objects, and n is the total number of

solid angles of each object.

(3) …

(4) …

.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 6

IV. EXPERIMENTAL

As described above, by using GPUs, when

processing the same calculation in parallel, it is
possible to output the results at high speed even if

the number of data is large. In the present study, we

verified that the results can be output at high speed

by using CUDA for a very large number of data

calculations that use trigonometric functions such as

solid angle by utilizing its properties.

Fig 17. Relationship between objects and hierarchies

(1)

Fig 18. Relationship between objects and hierarchies

(2)

A. Experimental content

The internal and external determination should
be validated in the range −50 ≤ x ≤ 50, −50 ≤ y ≤ 50,

and −50 ≤ z ≤ 50. However, the coordinates x, y, and

z of the points to be determined are all integer values.

Therefore, the number of points to be determined is

101 × 101 × 101 = 1,030,301. In the experiments,

internal and external determination was performed

for the primitive 3D shapes, as shown in Figs. 19 -

24, the vertex and surface information of which is

given in Table 1.

Because the proposed method is within the

upper limit for thread creation, each decision point

can correspond to one thread. Therefore, in
implementing using CUDA, it was defined as a grid

(16, 16, 16) and a block (8, 8, 8). However, in this

case, because it exceeds the range determined from

the relationship between the grid and the block [(16

× 8)3 > 1013], we chose to discard any result outside

the range.

From the above, the algorithm using CUDA

was implemented according to the activity diagram

shown in Fig. 25. In addition, for comparison, we

implemented a method on a conventional CPU
according to the activity diagram shown in Fig. 26.

Fig 19. Box

Fig 20. Cone

Fig 21. Cylinder

Fig 22. Convex shape

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 7

Fig 23. Sphere

Fig 24. Pipe

Table 1. Information about primitive 3D shapes

 Vertices Surfaces

Box (Fig. 19) 8 6

Cone (Fig. 20) 22 40

Cylinder (Fig.21) 42 60

Convex shape (Fig.22) 202 220

Sphere (Fig. 23) 382 400

Pipe (Fig. 24) 80 80

B. Experimental environment

We used a GPGPU that can be incorporated into

a laptop (NVIDIA 1060GTX). The experimental

environment is a device that can be prepared
relatively easily for consumers, and we reason that

this environment is appropriate for verifying whether

it can be applied to, in future, VR and AR fields.

Specifically, we prepared the environment as

described in Tables 2 and 3. More information about

the device can be found in Fig. 27.

Fig 25. Activity Diagram

Fig 26. Activity Diagram

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 8

Table 2. Specifications of the host PC

Technical specification Value

OS
CentOS Linux

release 7.4

Compiler gcc 4.8.5

CPU
Intel Corei7-
7700HQ

2.80GHz

Memory 32 GB

SSD 512 GB

Table 3. Basic device information

Technical specification Value

GPU
NVIDIA GeForce

GTX 1060

Compiler
CUDA Toolkit

9.1.85

Fig 27. Specification of device used in this experiment

V. RESULTS

Table 4 gives the time taken to output the
internal and external determination results for each

3D coordinate. In addition, the output results in

consideration of the hierarchy in Table 3 are shown

in Figs. 28–33. In outputting, the inside and outside

determination result file of each coordinate is read

and displayed using Java 3D. In all cases, the results

could be outputted accurately at high speed.

Table 4. Specifications of the host PC

Output
results

GPGPU
(s)

C (s)

Box(Fig.19)

Cone (Fig. 20)

Figs. 28

and 29
0.991 24.198

Cylinder

(Fig.21)

Convex shape

(Fig. 22)

Figs. 30

and 31
1.408 223.54

Sphere (Fig.

23)

Pipe (Fig. 24)

Figs. 32

and 33
1.768 424.22

VI. CONCLUSION

To determine accurately the 3D structure of

complex shapes, large amounts of data must be

processed. In this study, we showed that using a
GPU allows us to obtain the results at high speed. In

general, because the numbers of vertices and

surfaces to be the target of the operation to become

complex shape increase, we reason that the proposed

method is effective. However, because this method

of using a GPU depends on the device, it is not

necessarily the optimal method for a given shape. In

future studies, we will seek the optimal thread

generation system corresponding to the device so

that decisions can be made at high speed for

complex shapes in a wider range.

ACKNOWLEDGMENT

The authors would like to express our hearty

thanks to the anonymous referees who pointed out

several mistakes included in this original manuscript.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 9

Fig 28. Sample data

Fig 29. Sample data

Fig 30. Sample data

Fig 31. Sample data

Fig 32. Sample data

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 6 - June 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 10

Fig 33. Sample data

REFERENCES

[1] THE NUNATAK GROUP, VIRTUAL & AUGMENTED

REALITY, UPDATE, 4(7), 2016.

[2] Dusty Robbins, Chris Cholas, Mike Brennan, Keith

Critchley, Augmented and Virtual Reality for Service

Providers, Intel Corporation, Immersive media Business

Brief, 2017.

[3] P. Jimenez, F. Thomas, C. Torras, 3D collision detection: a

survey, Computers & Graphics, 25(2), 269-285, 2001.

[4] Y. Ozeki, S. Kameyama, S. Kodama, S. Akashi. A

Proposal for the User Interface by Using Laser Devices

Arranged in a Three Dimensional Space, Proceedings of

IPSJ/IEICE Forum on Information Technology, Vol. 3,

385-388, 2016.

[5] Nakayama Atsushi, Kawakatsu Daisuke, Kobori Ken-ichi,

Kutsuwa Toshirou, A Checking Method for a Point Inside

a Polyhedron in Grasping an Object of VR, Proceedings of

the 48th National Convention of IPSJ, 2, 297–298, 1994.

[6] S. Kodama, Verification of Efficacy of Inside-Outside

Judgement in Respect of a 3D-Primitive Shapes Using

GPGPU, International Journal of Modern Research in

Engineering and Technology, 2(3), 1-11, 2017.

[7] Dan Sunday, Inclusion of a Point in a Polygon, http://

geomalgorithms.com/a03-_inclusion.html.

[8] S. Kodama, Effectiveness of inside/outside determination

in relation to 3D non-convex shapes using CUDA, The

Imaging Science Journal, DOI: 10.1080/13682199.2018.

1497251, 2018.

[9] Adrian Kaehler, Gary Bradski, Learning OpenCV 3:

Computer Vision in C++ with the OpenCV Library,

O'Reilly Media, 978-1491937990, 2017.

[10] Samuel D. Jaffee, Laura Marie Leventhal, Jordan

Ringenberg, G. Michael Poor, Interactive 3D Objects,

Projections, and Touchscreens, Proceedings of the

Technology, Mind, and Society, DOI: 10.1145/3183654.

3183669, 2018.

[11] Andrew Davison, Pro Java 6 3D Game Development: Java

3D, JOGL, JInput and JOAL APIs, Apress, 978-

W1590598177, 2007.

[12] Richard G. Baldwin, Understanding Transforms in Java

(Java Programming Notes # 1552), https://www.

developer.com/java/other/article.php/3717101/Understandi

ng-Transforms-in-Java-3D.htm, 2007.

[13] John Cheng, Max Grossman, Ty McKercher, Professional

CUDA C Programming, Wrox Press Ltd., 9781118739327,

2014.

[14] David B. Kirk, Wen-mei W. Hwu, Programming

Massively Parallel Processors, A Hands-on Approach 3rd

Edition, Morgan Kaufmann, 9780128119860, 2016.

[15] Jason Sanders, Edward Kandrot, CUDA by Example: An

Introduction to General-Purpose GPU Programming,

Addison-Wesley Professional, 978-0131387683, 2010.

[16] Duane Storti, Mete Yurtoglu, CUDA for Engineers: An

Introduction to High-Performance Parallel Computing,

Addison-Wesley Professional, 978-0134177410, 2015.

[17] John Nickolls, GPU parallel computing architecture and

CUDA programming model, IEEE Hot Chips 19

Symposium, DOI: 10.1109/HOTCHIPS.2007.7482491,

2007.

[18] Onur Mutlu, Computer Architecture: SIMD and GPUs

(Part III) (and briefly VLIW, DAE, Systolic Arrays),

Carnegie Mellon University,

https://www.archive.ece.cmu.edu/~ece

740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.

1.3-simd-and-gpus-part3-vliw-dae-systolic.pdf.

[19] John Nickolls, William J. Dally, The GPU Computing Era,

IEEE Micro, 30(2), 56 - 69, DOI: 10.1109/MM.2010.41,

2010.

[20] Jem Davies, The bifrost GPU architecture and the ARM

Mali-G71 GPU, IEEE Hot Chips 28 Symposium (HCS),

DOI: 10.1109/HOTCHIPS.2016.7936201, 2016.

[21] Avneesh Bhatnagar, Evan Speight, Dan Crawl, Joseph

Dunn, John Bennett, Application management techniques

for the Bifrost system, Proceedings of the 5th IEEE

Workshop on Mobile Computing Systems & Applications

(WMCSA 2003), DOI: 10.1109/MCSA.2003.1240768, 66-

76, 2003.

[22] S.J. Pennycook, G.R. Mudalige, S.D. Hammond, S.A.

Jarvis, Parallelising Wavefront Applications on General-

Purpose GPU Devices, Proceedings of the 26th UK

Performance Engineering Workshop 2010, ISBN

9780955970320, 111-118, 2010.

[23] Daichi Mukunoki, Toshiyuki Imamura, Daisuke Takahashi,

Automatic Thread-Block Size Adjustment for Memory-

Bound BLAS Kernels on GPUs, IEEE 10th International

Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSOC), DOI: 10.1109/MCSoC.2016.32, 2016.

[24] Zahid Ansari, Asif Afzal, Moomin Muhiuddeen, Sudarshan

Nayak, Literature Survey for the Comparative Study of

Various High Performance Computing Techniques,

International Journal of Computer Trends and Technology,

27(2), 80-86, 2015.

